
J .  Fluid hlecli. (1969), vol. 35, part 4 ,  p p .  721-735 

Printed in Great Britain 
721 

The fluid mechanics of the aortic valve 

By B. J. BELLHOUSE A N D  L. TALBOTT 
Department of Engineering Science, Oxford University 

(Received 10 June 1968) 

The closure mechanism of the human aortic valve is investigated experimentally 
with a rigid-walled model placed in a pulsatile water-tunnel. It is shown that the 
valve is controlled by a fluid feed-back system incorporating a stagnation point 
a t  the downstream end of each sinus and a trapped vortex within it, and that 
threequarters of the valve’s closure is accomplished during forward flow, requir- 
ing only very little reversed flow to seal it. The experiments are complemented by 
solutions of the inviscid-flow equations, based on a Hill spherical vortex model. 

Introduction 
The heart consists of two pumps, the right side supplying the lungs, the left 

pumping oxygenated blood through the body. The pumps consist of a collecting 
chamber (atrium) a muscular-pumping chamber (ventricle) and an outlet pipe. 
There are non-return valves between the ventricle and the atrium and between 
the outlet pipe and the ventricle. The valves, particularly of the left side of the 
heart, are prone to disease and may have to be replaced, but their mechanical 
substitutes usually damage the red cells in the blood. The outlet pipe to the left 
ventricle is called the aorta and the valve between the left ventricle and the 
aorta is known as the aortic valve. It consists of three non-muscular flaps (cusps) 
only 0.1 mm thick which open and close once a second for about 70 years and 
support a pressure difference of 100 mm of mercury when closed. 

A photograph of a human aortic vale is shown in figure 1, plate 1.  The ventricle 
( V )  is a t  the bottom and the smooth wall of the aorta ( A )  at the top. The valve 
has been cut open, so the extreme left- and right-hand sides of the photograph 
correspond to each other. The cusps ( G )  and sinuses (8) are clearly visible and so 
are the sinus ridges (R) which are a marked feature. The position of a coronary 
ostium (0) is close to the sinus ridge, but within the sinus. The significance of this, 
and other features of the aortic root, are discussed more fully in another paper 
(Bellhouse & Reid 1968). 

The mechanism of the aortic valve has prompted speculation and experiment 
since the Renaissance. The majority of these theories have visualized the blood 
leaving the left ventricle as a jet, but our own measurements show that the 
velocity profile, within one diameter of the valve, is flat. Other theories depend 
on elastic recoil of the aortic wall to close the valve. One of the earliest theories, 
and certainly one of the  best, was advanced by Leonard0 da Vinci (1513), who 

t Permanent address : University of California, Berkeley. 
46 Fluid Meek 35 



7 22 B. J .  Bellhouse and L. Talbot 

realized that there were always three marked dilatations of the aorta, called 
sinuses, one corresponding to  each cusp of the valve. He correctly predicted that 
vortices would be formed in the sinuses and that they would feature in the 
control mechanism of the valve. Leonard0 was ignorant of the circulation of the 
blood and incorrectly ascribed other functions to  the vortices, which he supposed 
persisted for many heart-beats and dissipated energy to generate heat. The first 
anat$omical account of the aortic sinuses was published by Valsalva (1740), who 
was struck by the uniform presence of sinuses in a variety of birds and mammals 
and concluded that they must serve a common purpose in all these creatures. He 
suggested t,hat their main function was to dissipate the violence of systolic con- 
traction by allowing blood to  enter the sinuses during systole, which is the period 
when the ventricle is ejecting blood. Since about 7 5  em3 is ejected each beat, the 
sinuses are too small to  perform this function. 

The constancy of the proportions of the aortic valve in mammals suggests that 
all have the same mechanism, so we built a model of the valve with an aortic 
diameter of 2.5 cm, about the size of a human aorta. The valve was made of 
Perspex, except for the cusps which were 0.1 mm thick nylon net impregnated 
with silastic. The cusps were relaxed in the open position so that any elastic 
recoil they might have would work against closure. Since the sinuses were made 
of Perspex, they were inelastic; when flexible sinuses were fitted the performance 
of the valve was unaltered. One anatomical feature which is most marked is a 
ridge a t  the downstream end of the sinus, marked R in figure 1, and this was 
copied in the model. 

The model was placed in a pulsatile water-tunnel, which permitted indepen- 
dently adjustable steady and sinusoidal flow-components. Care was taken to 
settle, straighten and contract the flow in order to  present the valve with a 
laminar, uniform stream. The pulse could be adjusted to  resemble the physio- 
logical systolic flow-pulse, although the diastolic phases (during which the 
ventricle fills) did not match. However, the diastolic phase is of no interest in the 
study of the fluid dynamics of the aortic valve, since the valve is closed through- 
out,. 

The results of some simple experiments are described by Bellhouse & Bell- 
house (1 968). 

In  steady or pulsatile flow, intense vortices could be seen to form in the sinuses 
of Valsalva. I n  pulsatile flow they persisted throughout systole and the valve 
could be seen to close slowly and evenly, performing much of its closure movement 
during forward flow. Measurement of mean forward flow by timing a given dis- 
charge from the water-tunnel, and measurement of maximum reversed flow, wit h 
dye, together with a measurement of pulse rate, proved to  be a simple way of 
assessing the efficiency of the valve. This is defined as the net forward flow per 
pulse multiplied by 100 and divided by the peak forward flow per pulse. The valve 
was more than 98 % efficient. However, for an identical set of cusps placed in a 
tube without sinuses, no stagnation point and no vortex could form and the valve 
w-as only 75 % efficient and was closed by reversed flow suddenly and unevenly. 
The importance of the sinuses was clearly demonstrated, but the exact functions 
of the vortex and the stagnation point in each sinus remained obscure. I n  pulsatile 
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flow, the cusps remained fully open for over half of systole, so this phase was not 
dissimilar to steady flow, which is taken as our starting point. 

Steady flow 
With a steady velocity of 62.3 cm/sec in the aorta, the cusps were positioned 

as in figure 2 with a dividing streamline meeting the sinus ridge a t  S, opposite the 
centre of the cusp tip. With the use of dye, the vortex pattern, generated by a 
complex inflow-outflow system at the downstream end of the sinuses, could be 
observed. Each vortex occupied the entire sinus, but the core was located near 

open 

FIGURE 2. Streamlines for steady flow. 

the cusp tip. This observation was confirmed by velocity measurements using a 
heated-film anemometer, with free-stream values attained within the sinus near 
the cusp tip, and lower velocities deeper in the sinus. The pressure on the sinus 
ridge was measured to be 0.935 (&pUz) above free stream static pressure (where 
p is the fluid density, and U the aortic velocity) which showed that its pressure 
was close to the free-stream stagnation value. The pressure reduced rapidly along 
the curved sinus wall, with values at  A ,  B ,  C and D in figure 2 of (0.353, 0.227. 
0.176, 0.176)+pU2. The pressures at B‘, C’, D’ matched the pressures a t  B, C, B 
respectively and there was no radial variation of pressure in the aorta. The aortic 
pressures implied that the cusps bulged into the sinuses by about 1 mm on aver- 
age, and this was confirmed by observation, for the centre of the cusp appeared to 
be about 2 mm into the sinus, with the corners projecting slightly into the aorta. 

When a 2 mm sleeve was fixed into the aorta, level with S, to reduce the dia- 
meter of the aorta downstream of the sinuses, the cusps were observed to relign, 
again about 1 mm outside the line of the new sinus ridge. I n  neither case did the 
cusps flutter, which implied a stable fluid dynamic control system. Equilibrium 
was established with a balance of flow in and out of the sinuses, with the centre 
of the sinus ridge (S), maintained a t  free-stream stagnation pressure. 

The vortex is generated by flow in and out of the sinus, which is maximal in the 
equilibrium position of the cusp. If the cusp were deflected into the sinus, the 
vortex strength would be reduced and the sinus pressure would approach stagna- 
tion values which would restore the cusp to its equilibrium position. If the cusp 
were deflected away from the sinus, the stagnation point would be replaced by a 
reattachment point further downstream, and sinus pressure would approach the 
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pressure at the cusp tips, which will be below the free-stream value because of the 
na.rrowing of the orifice, and the cusps will again return to their equilibrium 
position. 

Steady flow analysis of the behaviour of a vortex in a hemispherical 
cavity 

Our model of the sinus vortex is one half of a Hill spherical vortex as, for 
example, described in Milne-Thomson (1960, pp. 553-4). We imagine that the 
aortic valve in its fully open position forms a plane surface bounding the major 
portion of the sinus and that both the aorta and sinus are of radius a. The cusp 
is of length $a along its major dimension and the flow in the aorta is assumed 
uniform and of velocity U (figure 3). 

Sinus wail 

\ 

--- 
cusp  Sinus 

gap 
FIGURE 3. Sinus vortex model. 

, .  
\ I  .’ 

FIGURE 4. Spherical polar co-ordinates. 

The stream function, $, for the Hill vortex in steady flow is given by 

4 = -&A(a2-r2)r2sin20 (1) 
and the associated velocities are 

in the spherical co-ordinate system shown in figure 4. 
The vorticity, curl q, has only one component, c, in the #-direction; that is, the 

vorticity is everywhere perpendicular to meridianal planes passing through the 
axis of symmetry, so that vortex lines are circles of radius 6 = r sin 0 and the 
magnitude of the vorticity is - 

l a  1 
r ar r aB’  5 = Ar sin B = -- (rq,) - -- (3) 
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The stagnation points of the Hill vortex occur at  r = a, 0 = 0,n and there is also 
a ring of stagnation points on the circle r = a/J2, 0 = in, which corresponds to 
the core of the vortex. In the full Hill spherical vortex, all vortex lines are closed 
circles, but in our hemispherical model all vortex lines, including the core, 
terminate at two symmetrical points on the surface of the cusps, except for the 
region of the sinus gap (see figure 3), where a complicated inflow-outflow pattern 
exists which is not accounted for in our model. This point is discussed in more 
detail below. Although viscous effects undoubtedly play some role in the vortex 
motion, we expect that the pressure distribution around the vortex, which is of 
chief concern to us, will be determined mainly by the motion of an essentially 
inviscid vortex core, in the manner envisaged by Batchelor (1956) and confirmed 
by Burggraf (1966). Also, the outflow from the corners of the sinuses undoubtedly 
convects vorticity downstream into the aorta, in a manner akin to that of the 
trailing vortices behind a finite wing and this effect is likewise not included in our 
model. 

The vorticity at the vortex core is, from (3), 

go = AalJ2. (4) 

When viscous and body forces are absent, as in the case of the Hill vortex, the 
total head H = ( p / p )  + &q2(q2 = q: + qi and p and p are pressure and density 
respectively) is given by the equation of motion, 

qr\ < = V H + ( a q / a t )  ( 5 )  

and from this we find that for steady flow, with aq/at = 0,  

which, on substitution of ( 2 )  and (3) and after integration yields 

H = - &A2 (a2r2 - T ~ )  sin2 8 + C. ( 7 )  

In  (7) the constant of integration C is evaluated by requiring that at  the stag- 
nation points r = a, 8 = 0,n the pressure be the stagnation pressure at  the sinus 
ridge, po. Thus, at  r = a, 8 = 0, n, H = C = polp, and the total head is 

It is natural to enquire whether diffusive processes are adequate for transporting 
vorticity from the boundary layer on the aortic side of the cusp, across the sinus 
gap into the sinus. Prom the theory of unsteady laminar boundary layers (and, 
it should be noted, the flow in a healthy aorta is laminar) we know that the time 
t D  for diffusion of vorticity over a distance a is of order of magnitude 

tD N a2/v (9) 

where v is the kinematic viscosity. If a = 1.0 cm and v = 3-5 x 10-2 cm2/sec, values 
typical of the human system, then tD N 28 sec. In pulsatile flow, the vortex must 
be established in much less than a second, so the vorticity contained in the sinus 
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can only be accounted for by convective transport, that is, by a combined inflow- 
out,flow process which establishes circulatory motion within the sinus and this 
is what is observed in the experiments. The time necessary to generate tJhe sinus 
vortex by convective processes, t,, is roughly the time necessary for a fiuid 
particle to make one circuit of the vortex, of radius a a t  free-stream velocity U ,  

so 

Taking a = 1.0 cm, U = 100 cm/sec, at  peak systole, t, N 0.05 see, which is the 
correct order of magnitude. 

If we assume that the vortex is generated by convective processes and can be 
dissipated only by viscosity during forward flow then we require that t, < l/f 
and to 9 1/f since 1/f is the duration of one heart beat. The first condition 
gives an upper bound of Strouhal number ( f a / U )  and the ratio t,/t, a lower 
bound of R,eynolds number ( Ua/v).  Bellhouse & Reid (1968) computed the values 
of R>eynolds and Strouhal numbers for the elephant, the mouse and man : 

Ualv f.lU 
Mouse 186 0*0089 
Man 4,458 0.0434 
Elephant 11,794 0.0756 

If we take t, < O - l / f  and t ,  3 lO / f ,  we obtain an upper bound of Stronhal 
number of 0.1 and a lower bound of Reynolds number of 100. 

Since convective effects are responsible for the formation of the siiius vortex, 
we may estimate the factor A by supposing that the vortex strengt,h, and in 
particular the vorticity a t  its core, is proportional to the angular velocity of the 

(11 )  
inflow to the sinus and put 

where cz is a constant. Since c0 = Aa,/ J2, we have 

<(l = au /a ,  

4 2  aU A = -  
a2 * 

From equatlions (a ) ,  (8) and (12) a.nd denoting the sinus and aortic pressurcs by 
p ,  and p ,  respectively, we obtain 

Writing the  velocity as 

we obtain 

q2=0.08a2U2 1 - 2  - + - +sin20 3 - - 2  - . [ (32 (34 ( (34 (:)2)1 (15)  

Denoting the average sinus pressure on the cusps, obtained by integrating p,s 
over the cusp surface, by Fs we have 
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Matching the measured pressure coefficient a t  C in figure 2 with (13) and 
r = 0 we find that a: = 3.21 and the pressure coefficient in (16) is 0.308. 

The peak velocity is attained a t  T = 0 and a t  r = a, 6' = from (15) and is 
found to be 0.91U. This is in agreement with experiment, although the peak 
values in velocity were attained more towards the sinus ridge. A better solution 
than the Hill vortex would allow for the displacement of the vortex core towards 
the sinus ridge, but it would add considerably to the complexity of the problem. 

Pulsatile flow 
The model valve was perfused with a pulsatile flow and the aortic velocity 

measured with a heated-element gauge (briefly described by Bellhouse & Bell- 
house (1968)). The probe's output, which was proportional to instantaneous 

Velocity 
probe a Cint 

camera 

Osciiloscope 

FIGURE 5 .  Experiment to measure simultaneously cusp position and aortic velocity. 

velocity, was displayed on an oscilloscope placed level with the valve (figure 5). 
Using a viewer placed downstream from the valve, the cusps and oscilloscope 
trace were filmed simultaneously as the valve opened and closed. Analysis of the 
cine film frame by frame produced the aortic velocity and valve-opening areas 
as functions of time, shown in figure 6. Unfortunately differential pressure 
gauges, suitable for use in water, and with adequate sensitivity, do not appear 
to be available commercially, thus reliable differential pressures were not 
obtained. Single-point pressure measurement was simple, using a piezo-electric 
gauge, but with peak-to-peak pressure variations of 200 mm of mercury, the 
expected differences across the cusps of about 1 mm of mercury could not be 
detected either by one gauge in two successive positions, or by backing off two 
gauges one against the other. 

The model valve was filmed with two pulsatile flows, one with no flow reversal, 
the other with reversal sufficient to fully close the valve. The former showed that 
at zero velocity the cusps had swept threequarters shut, and it was confirmed 
visually with dye studies, that a t  no position in the aorta did the flow reverse. 
Figure 6 refers to the second pulsatile flow, with full closure of the valve after a 
small amount of reversed flow. 

One feature of the aortic flowis that thevelocity profile is flat at  all phases of the 
cycle. This is true even at the aortic cross-section level with the sinus ridge, as 
can be seen in figure 7, where velocity measurements at various radial positions 
are shown. 
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FIGURE G .  Measurements of aortic velocity and valve opening area 
as a function of time. 

Velocity 

Time 

FIGURE 7. Velocity measurements level with sinus ridge. 
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Photographs of successive frames of a cine film of one cycle of the valve, viewed 
from the aorta with forward flow approaching the camera, are shown in figure 8, 
plate 2. The time interval between the frames is 1/24th second, since the cine 
filming was carried out at sound speed. One important feature is that the cusps 
are fully open by the fourth frame and are just starting to close on the eighth. 
There is no sign of cusp movement from the fourth to the seventh and closure 
is even and gradual. 

These experiments enable us to construct a simple physical description of the 
flow patterns and pressures in the aortic root. The cycle is conveniently divided 
into four phases: (i) opening phase, when the cusps first bulge forward and then 
rapidly move to their fully open position offering no resistance to forward flow. 
The cusps move from shut to open positions in about 15 % of the systolic time; 

(ii) the quasi-steady phase, when the cusps make no movement and remain fully 
open. Although there is a variation in aortic velocity with time, at the middle of 
the quasi-steady phase 8Ujat vanishes and &pU reaches its maximum, where U 
is the aortic velocity and t time. This phase, which occupies about 55% of 
systole, is regarded as identical to the steady flow described above, except that 
the sinus ridge pressure will vary slowly with time; (iii) the aortic deceleration 
phase, when the ventricle relaxes, occupies the last 30 yo of systole. An adverse 
pressure gradient will be established in the aorta which will cause a pressure drop 
across the cusps. As the cusps begin to close, fluid will be displaced and the cusp- 
sinus cavity enlarged. The additional flow into the sinus will continue t o  come 
from upstream and the flow pattern established in the quasi-steady phase, will 
persist (figure 9). This description is confirmed by the velocity traverse level with 
the sinus ridge, in figure 7. This mechanism spreads the streamlines downstream 
from the cusp tips and exploits the axial pressure gradient in order to three- 
quarters close the valve before forward flow ceases; (iv) the reversed flow phase, 
in which the cusps offer a large resistance to the reversed flow and are sealed. 

Model of pulsatile flow through the valve 
We assume that the flow through the valve is inviscid and the velocity varies 

negligibly across planes perpendicular to the axis, and that the cusps bound a 
cone-shaped moving surface, as in figure 10. We apply continuity and momentum 
equations to t,he control surface bounded by the cusps and the planes at  the cusp 
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tips and roots. These equations, together with an unsteady Bernoulli equation 
applied along the axis, which is always a streamline, enable us to calculate the 
pressure and velocity at the cusp tip and the average pressure difference across 
the cusps. We shall then relate this pressure difference to that associated with 
the sinus vortex. 

FIGURE 10. Model of pulsatile flow through the valve. 

In  figure 10, the cusps are of fixed length L, the angular velocity of the cusps 
is Q ,  the aortic radius is a and the radius of the circle formed by the cusp tips is r .  
The pressure and velocity a t  the plane of the aortic ring are p ,  and u1 respectively 
and a t  the plane of the cusp tip they are pt and ut. At a cross-section located at a, 
distance x along a cusp they are p and u respectively. 

q is the fluid velocity vector. This reduces to 
Conservation of mass within the control surface S gives p ( q  . d S )  = 0 where 

dV ma2u1 - nr2u - - , 
1 -  at 

where V is the volume contained by S. 
Conservation of momentum gives 

p u  (q . d S )  = axial force 

= na2r~1-pB+h2(PA-P1)1, (18) 

where P A  is the average pressure on the aortic-side of the cusps and h = rja. 
Equation (17) reduces to 

But (19) is valid a t  any cross-section within the control surface if 7 4  is replaced by 
u (2, t ) ,  L by x and h by yla, where y is the radius of the cross-section. Thus 

By symmetry, the pipe axis is always a streamline, so the unsteady Bernoull 
equation can be written as 
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where 12 = L2- (a -r)Zfrom figure 10. Substituting (20) in (18) and (21), and after 
integrl-ttion, we obtain 

and au dR u2 
p f i  = -AI$+ Blu- + C,'+ a D,aR2 + E ,  Ru,, Fa at 

where A ,  B,  . . ., A,,  B,, . . . are functions of h and Lla and are given in table 1. 

it ria A B C D E 
1.0 1 .boo - 1.125 0 2.531 - 2,250 
0.9 1.497 - 1.067 0.235 2.846 - 2.756 
0.8 1.483 - 1.001 0.563 3.240 - 3.485 
0.7 1.470 - 0.937 1.041 3.915 -4.512 
0.6 1.446 - 0.868 1-778 4.319 - 6.051 
0.5 1.414 - 0.795 3.000 5.859 - 8.522 

h A ,  B, c, Dl El 
1.0 1.500 - 1.125 0 2.531 - 2,250 
0.9 1.663 - 1.247 0.262 3.358 -3.198 
0.8 1.854 - 1.390 0.722 4.645 - 4.764 
0.7 2.101 - 1.576 1.585 6.755 - 7.509 
0.6 2.410 - 1'807 3.362 10.513 - 12.743 
0.5 2.828 - 2,121 7.500 18.000 - 24.000 

TABLE 1 .  Functioiis of h for L/a  = 1.5 in (22) and (23). 

With (19), (22)) and (23) we can compute the pressure differences -pl and 
p ,  - p ,  and the velocity a t  the cusp tip, u,, during the deceleration phase in terms 
of the observed time-dependent velocity through the valve ul ( t ) ,  and the 
observed rate of closure of the valve (from which R(t) can be calculated). Using 
the data of figure 6 with U = 71.2 cm/sec, f = 2-28 c/s and a = 1.27 em, we obtain 
the results shown in figures 11, 12, 13. In  figure 11 the curve marked A is the 
calculated pressure difference pt -p , .  The significance of curve B will be discussed 
later. These pressure differences are very small when compared with a rise and 
fall of static pressure of about 200 mm of mercury, and explain the inadequate 
performance of cusps which are too stiff. If a valve is prevented from opening 
fully, the vortices cannot form, and the control mechanism would be lost. Closure 
would be sudden and uneven, under reversed flow alone. Figure 12 shows the 
velocity a t  the cusp tip to be relatively constant during closure. Thus if the 
streamlines did not spread downstream of the cusp tip as in figure 9, the resultant 
jet would cause the sinus and cusp tip pressures jTs and pt  to be approximately 
equal during closure, with substantial loss of pressure difference across the cusps. 
The flow into the cusp-sinus cavity, calculated from the rate of displacement of 
fluid by the cusps, is substantial at all stages of closure (figure 13), so once the 
valve has begun to close, the flow patt,ern established in the early stages of systole 
will persist until foward flow ceases. 
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FIGURE 11. 
w q 2 n  

Calculated average pressure across the eusps during valve closure. 
A :  p t - p l ;  B :  j i i S - p A .  

1 I i i i 

wt12n 
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FIGURE 12. Cusp tip vclocity. 
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FIGURE 13. Volumetric flow in aorta, QA, and into sinus Qs. 
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Unsteady vortex solution 
The ca.lculation above enabled us to find the average pressure on the aortic side 

of the cusps necessary to  close the valve at  the observed rate. This pressure has 
to be transmitted across the cusps, which are fixed to  the aorta. We would expect 

Position ( e )  (d) (c )  

$ J %  

11.9 
(.) cmjsec 

5.8 
(dl cmisec 

FIGURE 14. Velocity measurements in a sinus. 

the pressure on the sinus-side of the cusps to exceed that on the aortic-side, and 
although differential pressure measurements in pulsatile flow were difficult to 
make, they were adequate to show that the pressure differences were of the order 
of one or two mm of mercury. In  steady flow, differential pressure measurement 
is simple and accurate, arid it was shown that sinus and free stream st,agnation 
pressures were equal. 
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We seek to calculate the pressure difference across the cusps generated by the 
vortex mechanism in the early stages of closure, using the Hill vortex model 
developed above. The stream function given in ( 1 )  satisfies the full unsteady 
equations of axisymmetric motion if the parameter A (given by (12)) is constant, 
although the aortic velocity and pressure and the vortex radius may vary with 
time. 

The assumption that A is constant is of doubtful value, since measurements of 
velocity in the sinuses indicate that the vortex velocity is tied to the aortic 
velocity in pulsatile flow. A better assumption would be a quasi-steady form of 
(12) and (16) with the steady velocity U replaced by the aortic velocity u1 ( t ) .  In 
addition we require that the pressure a t  the sinus ridge, p o ( t ) ,  is given by 

Po (0 -P1 ( t )  = BPU? - 2pa (du,/dt) 9 (24) 

which is an unsteady Bernoulli equation, and p1 ( t )  is the pressure a t  the aortic 
ring (figure 10). 

Assuming that the sinus and free-stream stagnation pressures are equal. as for 
the steady case, we obtain 

ps ( t )  -pl ( t )  z= 0.308 ( ~ P U ? )  - 2pa (dull&). ( 2 5 )  

The pressure difference across the cusps, ps - pa, is plotted as a function of time 
in curve B of figure 11. This quasi-steady calculation is valid only for small values 
of wt/2n, but it does indicate that deceleration of the aortic flow will generate 
adequate pressure differences across the cusps during valve closure. Account has 
been taken of the slight divergence of the flow due to the projection of the cusps 
into the sinuses in their fully open position, which results in an increase in the 
pressure pl  just sufficient to make the pressure difference across the  cusps vanish. 

Evidence which lends support to the assumption that the vortex velocity is 
tied to the aortic velocity in pulsatile flow, is presented in figure 14. Measure- 
ments of velocity in the aorta and at  four positions in the sinus show that the 
velocity within the sinus near the ridge, figure 14(b), where the vortex core is 
located in steady flow, is similar to the velocity in the aorta, figure 14 (a ) ,  through- 
out the pulse. The velocity was measured with a heated element, which rectifies 
reversed flow. The relatively low peaks in velocity in the sinus a t  positions (c), 
( d )  and (e) indicate that they are outside the main vortex region, but they do 
appear in pairs and lag the single peak obtained a t  position (b ) .  This implies that 
the vortex core moves in an upstream direction (within the sinus) during valve 
closure, and that viscosity causes some reduction in vortex strength. 

Conclusion 
Experiments have shown that an essential feature of the operation of the 

aortic valve is the formation and maintenance of trapped vortices in the aortic 
sinuses, and this flow pattern has also been analyzed by means of a simple illviscid 
flow model. It appears that the vortical flow in the sinuses plays two distinct 
roles in the valve operation. During the period of maximum velocity in the aorta,, 
when the valve is fully opened and the flow is quasi-steady, i t  acts as a control 
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system which responds to valve cusp position, maintaining the valve cusps in a 
static fully opened configuration with the cusp tips protruding slightly into the 
sinus cavities. In the closure phase of the cycle, the trapped vortices persist 
because of their long decay time, and maintain a certain relationship between 
the time-varying sinus pressure and the sinus ridge stagnation pressure and 
contribute to the prevention of jet formation from the narrowing valve opening. 
The relationship between the sinus-ridge and sinus-cavity pressures is such that 
the unsteady -flow, axial, adverse pressure-gradient through the valve during 
flow deceleration provides the main force to close the valve and this force is 
effective in producing almost complete valve closure before a very small reversed- 
flow phase occurs. 

This model of the fluid motion through the aortic valve leads to estimates for 
a lower bound to the Reynolds number and an upper bound to the Strouhal 
number for efficient valve operation, which appear to coincide with the limit,s 
found within the animal kingdom. 

The authors wish to thank Mr F. H. Bellhouse and Dr K. G. Reid for their 
considerable assistance. 
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FIGURE 1. Photograph of human aortic valve, showing the cusps ( C ) ,  sinuses (8) and one 
coronary ostium (0). Forward flow is from the left ventricle ( V )  to the aorta ( A ) .  Note the 
marked sinus ridges (R) .  
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